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Abstract. Type II solar radio bursts are signatures of the
coronal shocks and, therefore, particle acceleration events in
the solar atmosphere and interplanetary space. Type II bursts
can serve as a proxy to provide early warnings of incoming
solar storm disturbances, such as geomagnetic storms and ra-
diation storms, which may further lead to ionospheric effects.
In this article, we report the first observation of 32 type II
bursts by measuring various plasma parameters that occurred
between May 2021 and December 2022 in solar cycle 25. We
further evaluated their accompanying space weather events in
terms of ionospheric total electron content (TEC) enhance-
ment using the rate of TEC index (ROTI). In this study,
we find that at heliocentric distance ∼ 1–2 R�, the shock
and the Alfvén speeds are in the range 504–1282 and 368–
826 km−1, respectively. The Alfvén Mach number is of the
order of 1.2≤MA ≤ 1.8 at the above-mentioned heliocentric
distance. In addition, the measured magnetic field strength is
consistent with the earlier reports and follows a single power
law B(r)= 6.07r−3.96G. Based on the current analysis, it
is found that 19 out of 32 type II bursts are associated with
immediate space weather events in terms of radio blackouts
and polar cap absorption events, making them strong indica-
tions of space weather disruption. The ROTI enhancements,
which indicate ionospheric irregularities, strongly correlate
with GOES X-ray flares, which are associated with the type
II radio bursts recorded. The diurnal variability in ROTI is

proportional to the strength of the associated flare class, and
the corresponding longitudinal variation is attributed to the
difference in longitude. This article demonstrates that since
type II bursts are connected to space weather hazards, under-
standing various physical parameters of type II bursts helps
to predict and forecast the space weather.

1 Introduction

The interaction of coronal mass ejections (CMEs) and their
shocks with the magnetosphere is the major cause of the
strongest space weather events in the magnetosphere. Shocks
can be observed at extreme ultraviolet, visible and radio
wavelengths (Maguire et al., 2020; Carley et al., 2021).
CMEs trigger space weather hazards by compressing the
Earth’s magnetosphere upon their arrival at the Earth, which
results in channelling the particles into the Earth’s atmo-
sphere to produce auroras. CMEs are also responsible for ge-
omagnetic storms, power grid disruptions, accelerating solar
energetic particles (SEPs) events, etc. The energy released
by explosive flares produces disruptions in the Earth’s atmo-
sphere within 8 min of the initial emission time (Salmane
et al., 2018; Vourlidas et al., 2020). Solar flare radiations
interact with ionosphere constituents, causing an immedi-
ate rise in total electron density of the ionosphere. The ex-
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tent of the ionospheric total electron content (TEC) enhance-
ments appears to be determined by the category of solar flares
(Liu et al., 2004, 2006; Kumar and Singh, 2012; Al-Awadi
et al., 2023). During the peak of X-ray solar flares, iono-
spheric TEC abnormalities are frequently suppressed due to
accelerated solar energetic particles (Oljira, 2023). The rate
at which TEC varies temporally is related to the effective
flare radiation flux (Wan et al., 2002). Enhanced TEC in
the ionospheric D layer causes the absorption and blocking
of high-frequency radio signals, resulting in significant ra-
dio blackouts (R3) (Al-Awadi et al., 2023). Radio blackouts
are disruptions in wireless communication and global posi-
tioning satellite (GPS) systems that use radio waves to com-
municate through the ionosphere. The National Oceanic and
Atmospheric Administration (NOAA) classifies radio black-
outs into five levels, which occur when radio signals car-
ried through the ionosphere are reduced or absorbed (Ku-
mar and Singh, 2012). In addition to global navigation satel-
lite system (GNSS) signals, ionospheric disturbances have
a significant impact on high-frequency communications. Pi
et al. (1997) developed an index known as the rate of change
in TEC (ROT) that is based on the time rate of various
phase changes in dual-frequency GNSS signals crossing the
same ionospheric parcel and is expressed in TECU min−1

(1 TECU = 1016 electrons m−2). Depending on the dual-
frequency GPS signals, ROT explains the irregularities on
various length scales. The standard deviation of the ROT is
used to construct the rate of TEC index (ROTI), which has
the same unit as ROT (e.g. Pi et al., 1997; Cherniak et al.,
2014; Liu et al., 2019). ROTI describes the small-scale irreg-
ularity of the line-of-sight electron content resulting from the
ionosphere (Pi et al., 1997; Liu et al., 2019). During the solar
minimum, the corotating interaction regions (CIRs) are the
principal source of energetic particles in the heliosphere (e.g.
McDonald et al., 1976; Van Hollebeke et al., 1978; Richard-
son et al., 1993). CIRs develop when a stream of rapid solar
wind emerges from a coronal hole that reaches to low lat-
itudes and overtakes a parcel of slow solar wind generated
by the Sun at earlier times. The solar rotation causes these
plasmas of different speeds to become radially aligned and
interact (e.g. Gosling and Pizzo, 1999). This interaction gen-
erates a compression area that revolves with the Sun and can
amplify to produce shocks that accelerate particles. The ra-
dio emissions that occur in the solar atmosphere to interplan-
etary space arise from a broad range of physical phenom-
ena with space weather implications (e.g. flares, solar ener-
getic particles, CMEs and shocks, Fleishman et al., 2020;
Nindos, 2020; Vourlidas et al., 2020). Solar radio bursts
(SRBs) originate from different altitudes in the solar atmo-
sphere, and they are observed over a wide range of wave-
lengths from millimetres to decametres. Plasma density, elec-
tron beam density, injected electron beam speed, local turbu-
lence levels, etc., all have a significant impact on the gen-
eration of various solar radio bursts (Sasikumar Raja et al.,
2022a). Furthermore, electron density, magnetic field and

turbulence levels change with the solar cycle phase (Sasiku-
mar Raja et al., 2019, 2021; Ndacyayisenga et al., 2021).
Moreover, it is obvious that the phase of solar activity af-
fects the multiple coronal features outlined above, which in
turn influences the formation of SRBs. Wild et al. (1963)
classified SRBs into five types according to their morpholo-
gies of their dynamic spectra and their origin. Of the five
types, type II, III and IV bursts are relevant to space weather
study because they are associated with space weather drivers,
such as shock waves (type II bursts; Cairns et al., 2003;
Cane and Erickson, 2005; Chernov and Fomichev, 2021),
streams of electrons propagating along open magnetic field
lines (type III bursts; Reid and Ratcliffe, 2014, for a re-
view) and CMEs or post-flare loops (type IV bursts; Nin-
dos et al., 2008; Kumari et al., 2021). In the present pa-
per, metric type II radio bursts observed from the ground
by extended Compound Astronomical Low frequency Low
cost Instrument for Spectroscopy and Transportable Obser-
vatory (herein e-CALLISTO) (Benz et al., 2005, 2009) are
studied. First discovered by Payne-Scott et al. (1947), type II
radio bursts are among the most powerful events in the so-
lar radio emission observed at metric wavelengths (e.g. Wild
and McCready, 1950). At present, it is generally accepted
that type II radio emissions are excited by magnetohydrody-
namic (MHD) shock waves driven by solar flares, CMEs and
fast plasma flow in the magnetic reconnection regions (Maia
et al., 2000; Pick et al., 2006; Temmer et al., 2010; Grech-
nev et al., 2011; Vasanth et al., 2011; Kumari et al., 2017;
Gopalswamy et al., 2018; Zucca et al., 2018; Chernov and
Fomichev, 2021; Koval et al., 2023). Physical properties of
metric type II radio bursts, including but not limited to drift
rate, starting frequency and duration, are used to study the
dynamics of the middle and upper solar corona. For exam-
ple, the Alfvén Mach number, MA = VS/VA (VS and VA are
shock and Alfvén speeds, respectively), is calculated using
three different methods: (i) from shock geometry in extreme
ultraviolet (EUV) images, (ii) from the ratio of the CME
speed to the Alfvén speed and (iii) using shock parameters
derived from type II radio-band-splitting phenomena (Vrš-
nak et al., 2002; Maguire et al., 2020; Koval et al., 2023). A
recent study by Maguire et al. (2020) showed that these three
methods give consistent results after their comparative anal-
ysis. By analysing one or two events, many authors (e.g. Cho
et al., 2013; Cunha-Silva et al., 2015; Kumari et al., 2017;
Maguire et al., 2020; Lata Soni et al., 2021; Kouloumvakos
et al., 2021; Mann et al., 2022) have determined the mag-
netic field strengths and examined the spatial and temporal
evolution of shock properties, as well as the conditions re-
sponsible for type II radio emissions during the high solar
activity of solar cycle 24. There have been few works com-
pleted during the rise and fall phases of solar cycle 24 (e.g.
Gopalswamy and Yashiro, 2011; Vasanth et al., 2014). Kim
et al. (2012), on the other hand, covered the entire solar cy-
cle 23. In the current study, a number of events are analysed
during the ascending phase of solar cycle 25 which started
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in December 2019 (Kallunki et al., 2021; Ahluwalia, 2022;
Brajša et al., 2022). In this article, we apply the Rankine–
Hugoniot density jump relation and parameters of type II ra-
dio bursts to estimate the parameter of shock waves (shock
and the Alfvén speed and the Alfvén Mach number) of met-
ric type II radio bursts observed by e-CALLISTO and then
analyse their space weather implication in terms of the iono-
spheric TEC enhancements using ROTI variability on daily
basis.

2 Observation

2.1 Type II radio burst observation

The radio data presented in the current work were observed
by e-CALLISTO from May 2021 to December 2022 in solar
cycle 25. First, we selected a number of radio events from the
observations made by the instrument (https://e-callisto.org,
last access: 19 February 2024) and selected 32 well-separated
type II radio bursts whose morphologies are clear. We then
examined their association with the current solar phenom-
ena to give insights into the status of the ascending phase
of the solar cycle 25. In order to investigate the implications
of space weather in terms of TEC, each selected type II radio
burst was associated with a coronal mass ejection (CME) and
an onset of a solar flare. The flare records were checked from
the solar monitor (https://solarmonitor.org/, last access: 19
February 2024). The CME parameters were taken from the
Large Angle and Spectrometric COronagraph (LASCO C2)
on board the Solar and Heliospheric Observatory (SOHO;
Brueckner et al., 1995) catalogue updated to 30 Decem-
ber 2022.

2.2 Derivation of shock characteristic parameters

In this study, first we measured the bandwidth (BDW) of each
type II radio burst. Because all of the type II bursts do not
show a band-splitting feature, the BDW of the fundamental
band is linked to the ambient density jump to ensure consis-
tency in computation.

BDW=
fu− fl

fl
, (1)

where fu and fl denote the upper and lower frequencies,
respectively, of the fundamental emission band. Figure 1
shows an example of type II radio burst from 03:28:25 to
03:32:30 UT on 17 April 2022 for which fu and fl are indi-
cated. This burst is associated with an X1.1 flare that started
at 03:17 UT and stopped at 03:51 UT in NOAA active region
12994.

The values of BDW were used to estimate the density jump
across the shock (Vršnak et al., 2001, 2002; Cho et al., 2007;
Nedal et al., 2019) χ via the relation

χ = (BDW+ 1)2. (2)

Figure 1. Type II radio burst from 03:28:25 to 03:32:30 UT ob-
served by the South Korean Astronomy and Space science Institute
(KASI) on 17 April 2022. Fu and Fl denote the upper and lower
frequencies of the fundamental band of the type II radio emission.

By assuming low plasma ratio (β→ 0) for a perpendicular
shock in the corona (Vršnak et al., 2001, 2002), the density
jump allows one to compute the Alfvén Mach number (MA)
using the Rankine–Hugoniot approximation as follows:

MA =

√
χ(χ + 5)
2(4−χ)

. (3)

It has been shown that the rate of change in the frequency of
metric type II radio bursts is related to the shock speed and
the electron density gradient in the solar corona (e.g. Gopal-
swamy, 2011; Vemareddy et al., 2022) via the following:

Vs =−
2r
α

(
1
f

)(
df
dt

)
, (4)

where r is the shock formation height, α is a fitted empirical
index of density variation over the heliocentric distance, f is
the starting frequency, and df

dt is the frequency drift rate. The
electron density decreases with heliocentric distance from
the Sun, according to the power law ne(r)∝ r

−α . Three dif-
ferent density models by Newkirk (1967), Saito et al. (1977)
and Leblanc et al. (1998) describe the variation in the elec-
tron density in the corona and interplanetary medium. With
these models, it has been observed that within one to three
solar radii (R�), the electron density is directly proportional
to r−6 in the corona and directly proportional to r−2 beyond
few tens of solar radii. Because the type II radio observed
has all occurred in the range of ∼ 1− 2 R�, α is chosen to
be 6.13 (Gopalswamy, 2011). The Alfvén velocity is directly
related to the shock speed as

VA =
Vs

MA
. (5)

https://doi.org/10.5194/angeo-42-313-2024 Ann. Geophys., 42, 313–329, 2024

https://e-callisto.org
https://solarmonitor.org/


316 T. Ndacyayisenga et al.: Low-frequency solar radio type II bursts and space weather

Figure 2. Geographic locations of some GNSS station codes used
for this study (FALK is the Falkland Islands (Islas Malvinas),
British Overseas Territories; ABPO is in Madagascar; MBAR is
in Uganda; SEY2 is the Seychelles; IISC is for India; YKRO is
for Côte d’Ivoire; BOGT is in Colombia; BAKE is in Canada; and
INVK is in Canada).

In the region surrounding a CME, the ambient magnetic field
strength (B) of the plasma can be estimated using the follow-
ing relation (Vršnak et al., 2002; Cho et al., 2007; Lata Soni
et al., 2021):

B[G] = 5.1× 10−5
× fl[MHz]×VA[kms−1

], (6)

where fl is the lower frequency of the fundamental frequency
band.

2.3 Ionospheric data and solar energetic particles

Data from ground-based GPS receiver stations around the
world were used to analyse the ionospheric TEC for dis-
turbed days identified by type II radio burst observations
in this study. These include the African Geodetic Reference
Frame (AFREF) database (http://afrefdata.org/, last access:
12 February 2024) and UNAVCO Archive of GNSS Data
(https://www.unavco.org/, last access: 12 February 2024).
Figure 2 maps the geographic locations of some GNSS sta-
tions used in the current study for reference.

As GPS data are usually provided in a Receiver Indepen-
dent EXchange (RINEX) format, TEC were derived from
RINEX files using the GPS TEC software developed at
Boston College, assuming a thin-shell ionosphere at the al-
titude of 350 km. Details on the software used to derive TEC
are provided in Seemala and Valladares (2011) and Uwama-
horo et al. (2018) and references therein. To reduce the mul-
tipath effects on slant TEC (STEC), the elevation angle was
fixed to 30°. The ROT was calculated using Eq. (7) pro-
posed by Pi et al. (1997) and has been utilized by several re-
searchers to explore ionospheric irregularities (Azzouzi et al.,
2015; Liu et al., 2016, 2019; Dugassa et al., 2020; Habyari-

mana et al., 2023).

ROT=
STECk+1−STECk

1tk
, (7)

where STECk+1 and STECk are the STEC values at two suc-
cessive epochs, and 1tk is the time difference between them
equivalent to 30 s for the International GNSS Service (IGS)
given in Fig. 2. Equation (8) was used to calculate the ROTI,
which was defined as the standard deviation of ROT over
5 min.

ROTI=
√
< ROT2 >−< ROT>2, (8)

where the <> stands for the time-averaged value. The solar
energetic particles were taken from the database at https://
cdaweb.gsfc.nasa.gov/ (last access: 19 February 2024).

3 Results and discussion

3.1 Comparison and analysis

During the ascending phase of the solar cycle 25, the e-
CALLISTO network observed a series of solar radio bursts
in the range from 5 to 870 MHz. With the interest of space
weather diagnostics, 32 well-separated type II radio bursts
observed are presented in this study. Table 1 lists the spec-
trometers used in this study, as well as their geographic lo-
cations, frequency range of observation and number of radio
bursts taken at each station. All spectrometers are observing
in a narrow frequency range of few tens of megahertz.

Using the radio parameters such as bandwidth, drift rate
and starting frequency, the shock characteristics from each
radio event have been estimated. Table 2 illustrates each
type II radio burst selected and the associated CME, GOES
soft X-ray flares and shock characteristics. The first col-
umn of this table is the numbering index of the events, the
next four columns are the date of the radio events in the
format dd/mm/yyyy and hh:mm, their starting frequencies,
f (MHz), their drift rates (MHz s−1) and their shock for-
mation heights (R�) estimated using the relation f (r)=

307.87r−3.78
− 0.14 (Gopalswamy et al., 2013). Columns 6

to 9 are the GOES soft X-ray flare parameters (start, class,
NOAA region and location), followed by two columns that
present the CME onset and speed, respectively. Columns 12
to 15 present the shock characteristics (density jumps, Mach
numbers, shock and Alfvén velocities, respectively), while
the last column of this table presents the estimated ambient
magnetic field strength B (Gauss).

There is a strong correlation (CC = 0.98) between the
drift rates and starting frequencies of the type II radio bursts
(Fig. 3), which are the key parameters to estimate the shock
speeds from the dynamic spectra. Higher starting frequency
have higher drift rates (Umuhire et al., 2021). Such a corre-
lation agrees well with the previous studies, giving slopes of
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Table 1. e-CALLISTO Spectrometers, their geographical locations and their frequency ranges.

No. File ID Country Lat (°) Long (°) Obs. frequency range (MHz) No. of events

1 Australia-ASSA Australia −34.66 139.64 15–87 11
2 Arecibo Observatory Puerto Rico, USA 18.22 −66.59 15–87 9
3 GREENLAND Greenland 67.00 −50.72 10–110 3
4 ALASKA-HAARP USA 62.40 −150.20 5–87 2
5 ALMATY Kazakhstan 43.22 76.83 45–165 1
6 BIR Ireland 16.61 77.51 10–100 2
7 INDIAN-OOTY India 11.41 76.69 45–165 1
8 KASI South Korea 36.35 127.38 150–400 1
9 MEXICO-LANCE Mexico 19.81 −101.69 50–90 1
10 SWISS-Landschlacht Switzerland 47.63 9.25 15–87 1

Table 2. Type II radio bursts observed by e-CALLISTO during the ascending phase of solar cycle 25 and their associated CMEs, GOES soft
X-ray flares and estimated shock characteristics.

Type II burst event Soft X-ray flare CME Shock characteristics

No. Date f Drift rate Height Start Class NOAA Location Onset Speed χ M Vs VA B field
(UT) (MHz) (MHz−1) R� (UT) (UT) (km−1) (km−1) (km−1) G

1 22/05/2021 02:57 86 −0.13 1.4 02:47 C6.1 12824 N18E25 . . . . . . 1.6 1.5 752 504 1.5
2 23/06/2021 07:05 73 −0.10 1.5 06:43 C3.4 12833 N14E89 07:24 390 1.5 1.4 668 464 1.2
3 25/07/2021 04:54 64 −0.11 1.5 . . . . . . F. S. . . . 05:48 237 1.3 1.2 785 637 1.6
4 28/08/2021 05:10 64 −0.11 1.5 05:01 C7.0 12860 S31E06 . . . . . . 1.7 1.6 894 556 1.2
5 09/10/2021 06:34 75 −0.11 1.5 06:19 M1.6 12882 N18E06 07:00 712 1.6 1.5 735 496 1.3
6 09/10/2021 06:49 31 −0.04 1.9 06:19 M1.6 12882 N18E06 07:00 712 1.3 1.3 706 561 0.7
7 28/10/2021 15:28 90 −0.18 1.4 15:17 X1.0 12887 S26W07 15:48 1519 2.0 1.8 1273 697 1.6
8 20/12/2021 11:27 87 −0.14 1.4 11:12 M1.8 12908 S20W01 12:36 386 1.7 1.6 750 479 1.5
9 12/01/2022 04:28 69 −0.11 1.5 . . . . . . F. S. . . . 03:12 433 1.8 1.7 816 479 1.1
10 12/02/2022 08:33 173 −0.36 1.2 08:25 M1.4 12939 S17W82 08:12 785 1.3 1.2 792 659 4.1
11 02/03/2022 17:42 67 −0.11 1.5 17:31 M2.0 12958 N15E29 18:24 248 1.9 1.7 924 532 1.1
12 14/03/2022 17:20 98 −0.13 1.4 17:13 B8.5 12964 S30W86 17:48 534 1.9 1.7 883 506 1.2
13 25/03/2022 05:15 66 −0.12 1.5 05:02 M1.4 12974 S18E37 06:12 433 1.5 1.4 801 590 1.6
14 28/03/2022 11:23 87 −0.15 1.4 10:58 M4.0 12975 N18W04 12:12 335 1.8 1.7 951 554 1.4
15 30/03/2022 17:33 72 −0.11 1.5 17:21 X1.3 12975 N13W31 18:00 493 1.9 1.8 1128 654 1.1
16 31/03/2022 18:34 67 −0.13 1.5 18:17 M9.6 12975 N12W47 19:12 489 2.0 1.8 1081 594 1.3
17 02/04/2022 13:24 71 −0.15 1.5 12:56. M3.9 12975 N12W68 13:36 686 1.8 1.6 1038 631 1.5
18 17/04/2022 03:28 382 −0.83 0.9 03:17 X1.1 12994 N12E88 03:48 728 1.2 1.2 828 711 7.8
19 21/04/2022 02:00 85 −0.15 1.4 01:47 M9.6 12993 N22E23 02:36 828 1.7 1.5 1070 696 1.6
20 21/04/2022 22:47 69 −0.11 1.5 22:39 C1.6 12993 N12E25 23:12 389 1.4 1.3 791 591 1.4
21 30/04/2022 13:46 83 −0.13 1.4 13:37 X1.1 12994 N16W88 14:00 535 1.7 1.5 936 610 1.4
22 30/04/2022 19:50 80 −0.12 1.4 19:42 M1.9 12994 N16W88 20:12 793 1.7 1.6 855 543 1.3
23 04/07/2022 13:35 69 −0.13 1.5 12:23 C5.1 13050 N17E36 11:36 256 1.7 1.6 918 581 1.4
24 05/07/2022 04:16 69 −0.10 1.5 03:59 C9.8 13045 S20W18 05:00 515 1.6 1.5 761 512 1.2
25 14/08/2022 12:05 70 −0.08 1.5 11:50 C2.4 13076 N21W14 13:25 411 1.4 1.3 512 402 1.1
26 18/08/2022 12:12 62 −0.16 1.6 . . . . . . F. S. . . . 11:00 1131 1.7 1.6 1282 826 1.9
27 19/08/2022 04:35 81 −0.10 1.4 04:14 M1.6 13078 S27W48 04:49 695 1.3 1.2 504 420 1.4
28 23/09/2022 18:02 67 −0.12 1.5 17:48 M1.7 13110 N16E84 18:12 687 2.0 1.8 1010 548 1.1
29 29/09/2022 12:06 80 −0.10 1.4 11:50 C5.7 . . . N26E86 12:24 321 1.5 1.4 672 473 1.2
30 09/11/2022 20:03 89 −0.11 1.4 . . . . . . F. S. . . . 20:36 371 1.5 1.4 618 435 1.3
31 03/12/2022 17:44 84 −0.13 1.4 17:36 M1.2 13157 N14E89 . . . . . . 1.8 1.8 857 518 1.3
32 14/12/2022 08:30 160 −0.22 1.2 08:24 M1.1 13162 S16W89 08:48 402 1.9 1.8 657 368 1.7

ε = 1.89 and ε = 1.33, respectively (e.g. Vršnak et al., 2002;
Umuhire et al., 2021).

From Table 2, it is clearly observed that 4 out of 32 ra-
dio events are not associated with any solar flare because
they originate from the far side on the solar surface, but
the shocks generating these bursts were excited by associ-
ated CMEs. It is also noticed that 19 out of 28 are con-
nected with intense GOES X-ray flares (M and X classes),

which is compatible with their speeds, as well as estimated
shock speeds. We derived the shock and Alfvén speeds of
these type II radio bursts of the order of 504–1282 and 368–
826 km−1, respectively, at heliocentric distance ∼ 1–2 R�.
Comparatively, values are consistent with the measurements
reported by Cunha-Silva et al. (2015); Minta et al. (2023)
about 590–810 and 250–550 km−1, respectively, at ∼ 1.2–
1.8 R�. The Alfvén speeds from the current work are also
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Figure 3. Scatterplot between the absolute drift rates
(
|
df
dt |
)

and
the starting frequency (fs) for all 32 metric type II radio bursts.
The power law least squares fits and the corresponding correlation
coefficient (CC) are shown.

Figure 4. Scatterplot showing the correlation between the speeds
from LASCO FOV and speeds derived from dynamic spectra.
Higher values of speeds obtained from dynamic spectra are at-
tributed to the radio source, which propagates at faster speeds due to
the interaction of slow CMEs with background magnetized coronal
plasma (Tan et al., 2019).

in agreement with the range of the Alfvén speeds of 140–
460 km−1 over 1.2–1.5R� and 259–982 km−1 over 3–15R�
given in Gopalswamy and Yashiro (2011) and in Kim et al.
(2012), respectively. Figure 4 presents the correlation be-
tween the speeds from the LASCO field of view (FOV) and
the speeds derived from the dynamic spectra.

The Table 2 observations and Fig. 4 show that there are es-
timated shock speeds that are faster than CME speeds from
LASCO FOV, and vice versa. The difference in CME speed
between dynamic spectra and LASCO is attributed to the
CME’s central position angle as observed by LASCO, im-

plying that the shock may be weakened and dissipated be-
fore entering LASCO FOV (Gopalswamy et al., 2011). On
the other hand, the shock decelerates in the case of a de-
cline in its intensity or when it breaks. The type II burst
only serves as a time marker for when the shock occurs. It
should be noted that type II radio emission can come from
anywhere on the shock front, namely the nose or the flanks,
depending on which location is best for electron accelera-
tion (Gopalswamy et al., 2013). Solar radio type II bursts
associated with slow CMEs are thought to be generated from
non-thermal electrons accelerated by a moving magnetic re-
connection when slow CMEs interact with the background
magnetized coronal plasma (Tan et al., 2019). Furthermore,
a recent study confirmed that observing a type II radio burst
is evidence of shock acceleration in the solar corona (Cher-
nov and Fomichev, 2021). The Alfvén Mach numbers in the
range ∼ 1.2–1.8 at ∼ 1–2 R� are consistent with the mea-
surements of about 1.1–1.9 at ∼ 1.3–2.5 R� reported by
Vršnak et al. (2002) and that of Cunha-Silva et al. (2015) of
the order of 1.4 to 1.7 at ∼ 1.2–1.8 R�. The magnetic field
strength is an important parameter that influences the dynam-
ical eruption of CMEs in the solar atmosphere (Sasikumar
Raja et al., 2014; Carley et al., 2017). High-starting type
II radio bursts are associated with coronal shocks that are
closer to the solar surface. As a result, high magnetic field
values are expected. Figure 5 demonstrates the variation in
the magnetic field strength estimated in this study (Eq. 6) rel-
ative to the quiet Sun magnetic field model B(r)= a

r2 with
a = 2.2 (Gopalswamy et al., 2001) and Dulk and McLean
(1978) empirical model for the magnetic field above active
region B(r)= 0.5(r − 1)−1.5. The magnetic field has been
calculated in the range 0.5< B < 8G at ∼ 1–2 R�, which
shows excellent consistency with earlier research and is fit-
ted with a single power law distribution of the type B(r)=
6.07r−3.96G, as represented by the dotted black curve in
Fig. 5.

However, Rankine–Hugoniot jump relation has been used
by a number of researchers to derive shock parameters. For
example, with this technique, Smerd et al. (1974, 1975)
found 1.2≤MA ≤ 1.7 and 0.3≤ B ≤ 4G. The same tech-
nique was applied by Vršnak et al. (2002), who reported a
magnetic field strength in the range 1–8G at heliocentric
distance of ∼ 1.6R�. A field strength of 6–5G at ∼ 1.5–
1.77 R� is reported by Ramesh et al. (2010). Dulk and
McLean (1978) and Sasikumar Raja et al. (2022b) have given
a detailed review on solar coronal magnetic fields measured
using different techniques and at different wavelengths of the
electromagnetic spectrum. A recent work has reported that
two necessary conditions for type II radio emissions, (i) rela-
tively intense shock waves (the Mach number should exceed
a certain value Mcr) and (ii) perpendicular shock waves, are
required (Chernov and Fomichev, 2021). Our values of Mach
numbers 1.2≤MA ≤ 1.8 agree well with these conditions.
In Table 3, the statistical findings from this study and ear-
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Figure 5. Comparison of the magnetic field strength from the cur-
rent study, the quiet Sun magnetic field model (Gopalswamy et al.,
2001) and the empirical magnetic field relation (Dulk and McLean,
1978). The magnetic values estimated are all above the quiet Sun
magnetic model, and the pattern is close to the empirical model,
which confirms that the Sun was awake.

Figure 6. Type II radio emissions observed on 28 October 2021
overlapped by a type IV radio emission from 15:32 to 15:43 UT.

lier research that examined more than two radio events are
summarized and compared.

3.2 Associated space weather implication

The ascending phase of solar cycle 25 is characterized by
more intense solar activity than expected (e.g. Dang et al.,
2022; Hapgood et al., 2022; Kataoka et al., 2022). Tan (2011)
and Sarp et al. (2018) show that solar cycle 25 is more active
than the previous cycle and is more consistent with actual
observations as predicted. Furthermore, Du (2020) estimated
that the maximum peak of cycle 25 would be 30 % stronger

than that of cycle 24. These indicate that the activity would
be high, and we use this advantage to track the intensity of
early space weather events in the current cycle. To account
for ionospheric irregularities caused by concurrent GOES X-
ray flares, type II solar radio bursts were utilized as selection
criteria for disturbed days due to their association with solar
phenomena such as radio blackouts. The ROTI were exam-
ined on 25 type II radio bursts, which are linked to both solar
flares and CMEs, by selecting GNSS stations in either equa-
torial, mid-latitude or high-latitude regions. Furthermore, the
ROTI classifies the irregularities of the ionospheric TEC
as no TEC irregularity (ROTI < 0.25 TECU min−1), weak
(0.25≤ ROTI < 0.5 TECU min−1), moderate (0.5≤ ROTI
< 1.0 TECU min−1) and strong (ROTI ≥ 1.0 TECU min−1)
(Liu et al., 2016). It is worth noting that four major solar en-
ergetic particles (> 10 MeV; SEPs) occurred on days when
type II radio bursts are observed, and these dates are used as
illustrative examples in this study.

3.2.1 28 October 2021 event

Type II radio bursts on 28 October 2021 were recorded by
the CALLISTO spectrometer, Birr Castle, Ireland. This type
II burst is recorded in the time range from 15:28 to 15:38 UT,
which overlapped by a type IV radio burst from 15:32 to
15:43 UT as indicated in Fig. 6. This radio event is associated
with the GOES soft X-ray flare of X1.0 class that started at
15:17 UT, peaked at 15:35 UT and stopped at 15:38 UT from
the NOAA active region (AR) 12 887 explosion.

It is also associated with energetic halo CME observed
by LASCO C2 coronagraph with onset at 15:48 UT with
a speed of 1519 km−1. This CME did not reach near the
Earth, and therefore, no geomagnetic storm was recorded in
next 5 d. It is observed that a few minutes after the type II
had started, an enhancement of protons took place as an ef-
fect of radio blackout (R3; major, https://spaceweather.com/
images2021/28oct21/blackout_x1.jpg, last access: 15 Febru-
ary 2024) which affected the whole South America and At-
lantic Ocean. Figure 7 depicts the ionospheric irregularities
in terms of ROTI observed in different region of the globe.

It is noted that the flare has no direct interaction with
the magnetosphere, but its radiation agents (X-rays, UV
and EUV) perturb the ionosphere by increasing the ioniza-
tion which in turn causes the signal delay in global naviga-
tion satellite systems (GNSSs) (e.g. Amory-Mazaudier et al.,
2017). Figure 7 clearly shows that there is no ionospheric
perturbation associated with the X1.0 flare in the equatorial
region over Seychelles (Fig. 7a), whereas ROTI is strongly
suppressed in the mid-latitude zone over India (Fig. 7b). The
ROTI profile in high-latitude region over Colombia (Fig. 7c)
is consistent with the X1.0 flare flux profile (Fig. 7d). Ac-
cording to Habarulema et al. (2022), the F2 layer was unaf-
fected by the X1.0 flare on 28 October 2021. However, ROTI
is strongly suppressed in equatorial region (SEY2) when sub-
stantial SEP arrives at 17:00 UT. On this day, a major SEP (>
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Table 3. Comparison of the statistical findings of this study and previous studies that analysed more than two radio events.

Epoch No. of events Mean shock Mean Alfvén B-field range Height range Citation
(R�) Citation

2021–2022 32 860 566 8–0.5 1.0–2.0 This work
2013–2014 4 739 579 1.8–1.3 1.7–1.9 Kishore et al. (2016)
1996–2007 10 1288 555 0.105–0.006 3–15 Kim et al. (2012)

Figure 7. Variability in the ROTI in the (a) equatorial region (SEY2), (b) mid-latitude region (IISC), (c) high-latitude region (BOGT) and
(d) associated GOES soft X-ray X1.0 flare intensity profile.

10 MeV) is observed with an onset time of roughly 17:00 UT
on the high-energy detector (HED) on board the Solar and
Heliospheric Observatory (SOHO) Energetic and Relativistic
Nuclei and Electron (ERNE) experiment, as shown in Fig. 8.

However, the neutron monitor (https://gle.oulu.fi/, last ac-
cess: 16 February 2024) recorded the SEP on 28 Octo-
ber 2021 as a ground-level event (GLE) that started at
15:46 UT (Klein et al., 2022).

3.2.2 28 March 2022 event

The solar activity is seen to be high during March 2022.
This is due to a number of solar events observed and
recorded during this month where seven type II radio events
were recorded in March 2022. Figure 9 presents a type
II radio burst observed by the e-CALLISTO network at
Arecibo Observatory in Puerto Rico, USA, from 11:23:12 to
11:28:37 UT on 28 March 2022 within the 87–32 MHz fre-
quency range. This burst is overlapped by a type IV radio
burst that occurred from 11:26 to 11:36 UT. These bursts are
associated with a GOES soft X-ray flare M4.0 that started
at 10:58 UT, peaked at 11:29 UT and stopped at 11:45 UT

from NOAA 12 975. This eruption also produced a tsunami
in the solar atmosphere (see https://sdo.gsfc.nasa.gov/data/
dailymov/movie.php?q=20220328_1024_0193, last access:
15 February 2024).

The bursts are also associated with a partial halo CME
with speed of 335 km−1, and the CME was off the Sun–
Earth line because no geomagnetic storm is linked to it. How-
ever, the flare and the tsunami accelerated protons that hit the
Earth’s magnetosphere and caused a minor radiation storm.
The enhancement of proton events is revealed by the ra-
dio blackout that cover the whole African continent (https:
//spaceweather.com/images2022/28mar22/blackout.jpg, last
access: 15 February 2024) and the polar cap absorption
event (PCAE) that occurred after about 02:40 UT from the
burst onset (https://spaceweather.com/images2022/28mar22/
pca.jpg, last access: 15 February 2024). This event is a sig-
nature of the solar proton enhancement where the high fre-
quency (HF) and very high frequency (VHF) are absorbed
while low and very low frequencies are reflected at a low al-
titude. Previous works showed that solar flares that cause so-
lar energetic particles (SEPs) are usually accompanied by ra-
dio bursts and noise storms that disturb the ionospheric TEC

Ann. Geophys., 42, 313–329, 2024 https://doi.org/10.5194/angeo-42-313-2024

https://gle.oulu.fi/
https://sdo.gsfc.nasa.gov/data/dailymov/movie.php?q=20220328_1024_0193
https://sdo.gsfc.nasa.gov/data/dailymov/movie.php?q=20220328_1024_0193
https://spaceweather.com/images2022/28mar22/blackout.jpg
https://spaceweather.com/images2022/28mar22/blackout.jpg
https://spaceweather.com/images2022/28mar22/pca.jpg
https://spaceweather.com/images2022/28mar22/pca.jpg


T. Ndacyayisenga et al.: Low-frequency solar radio type II bursts and space weather 321

Figure 8. Profile of the particle intensity of the SEP on 28 October 2021 in five energy levels, with the onset at 17:00 UT and peak at
18:26 UT.

Figure 9. The type II radio emissions that are observed on
28 March 2022 from 11:23:12 to 11:28:37 UT followed by a type
IV radio bursts from 11:26 to 11:36 UT.

(Ranta et al., 1993) and mostly observed 20 min to 20 h after
the solar flare (Mitra, 1974; Kavanagh et al., 2004; Perrone
et al., 2004). They also showed that SEPs and PCAEs are fre-
quently close to the maximum solar cycle (Shea and Smart,
2002), but the solar cycle 25 is far from its maximum. Thus,
these observations are the evidence of high solar activity dur-
ing the ascending phase of the current sunspot cycle. It is im-

portant to note that the association of type II radio bursts with
space weather drivers such as solar flares, SEPs and coronal
mass ejections make them special for space weather (Kumari
et al., 2019; Ndacyayisenga et al., 2021). Figure 10 presents
the ionospheric irregularities using ROTI in response to the
solar flare of 28 March 2022.

Figure 10a reveals strong TEC abnormalities (ROTI >
0.5 TECU min−1) at the M4.0 flare intensity peak. In re-
sponse to the M4.0 flare, no TEC anomalies are seen in the
mid-latitude and equatorial regions (Fig. 10b–c). Further-
more, the suppression of ROTI in the mid-latitude zone is
related to the significant SEP, which began about 13:00 UT,
as shown in Fig. 11.

This figure shows two peaks in particle intensities at 15:50
and 17:11 UT, respectively. It also indicates a decline in the
minimum particle intensity at 16:55 UT. The mid-latitude re-
gion above India has an ionospheric irregularity as a result of
SEP. As ROTI ≥ 0.5 TECU min−1 indicates, the equatorial
region (Mbarara station) was impacted by the intensification
of the SEP during the ascent towards the second peak.

3.2.3 31 March 2022 event

The type II radio burst observed by e-CALLISTO network
at Arecibo Observatory in Puerto Rico, USA, from 18:33 to
18:37 UT on 31 March 2022 with the 76–34 MHz frequency
range is overlapped by a type IV radio burst that occurred
from 18:36 to 18:41 UT. These bursts are associated with
GOES soft X-ray flare M9.6 that started at 18:17 UT, peaked
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Figure 10. ROTI variability in the (a) high-latitude region, (b) mid-latitude region, (c) equatorial region and (d) associated GOES soft X-ray
M4.0 flare.

Figure 11. Major SEPs in five energy levels that occurred on 28 March 2022.

at 18:35 UT and stopped at 18:45 UT from NOAA 12975.
These events are associated with halo CME (19:12 UT)
with speed of 489 km s−1 and caused a minor storm on
2 April 2022. A major SEP is also seen on this day, beginning
at 03:35 UT and peaking at 04:36 UT. It is outside of the burst
time range, and no other bursts were reported to correspond

with the SEP (see https://cdaw.gsfc.nasa.gov/CME_list/
daily_plots/sephtx/2022_03/sephtx_20220331.png, last ac-
cess: 16 February 2024). This SEP is assumed to be caused
by the CIRs (McDonald et al., 1976; Van Hollebeke et al.,
1978; Richardson et al., 1993; Tsurutani et al., 2009) with no
GOES soft X-ray flare connected with it. Figure 12 displays
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Figure 12. Daily variation in the ionospheric TEC in terms of ROTI (a) in the high-latitude zone (b), in the mid-latitude region and (c) in
equatorial region with the (d) associated GOES soft X-ray flare.

Figure 13. Daily variation in the ionospheric TEC in terms of ROTI (a) in the high-latitude zone, (b) in the mid-latitude region, (c) in the
equatorial region and (d) accompanying GOES soft X-ray flare.

the daily fluctuation in the ionospheric TEC in terms of ROTI
over (Fig. 12a) high-latitude (INVK), (Fig. 12b) mid-latitude
area (IISC), (Fig. 12c) equatorial region (MBAR), and the
associated GOES soft X-ray flare flux profile (Fig. 12d).

The significant anomalies in high latitudes are thought to
be caused by SEP intensification (Fig. 12a). However, no no-
table anomalies have been seen in the mid- and equatorial ar-

eas as a result of the SEP event. Furthermore, there were no
anomalies in any of the locations caused by the M9.6 solar
flare. This is believed to be due to electrodynamic coupling
of the ionosphere–magnetosphere (Liu et al., 2021; Liu et al.,
2021).
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3.2.4 2 April 2022 event

The month of April 2022 is also characterized by intense so-
lar activity. On 2 April 2022 between 13:24 and 13:31 UT,
a type II radio emission is registered within the 86–30 MHz
frequency range followed by a type IV radio emission from
13:28 to 13:35 UT. They are associated with a GOES soft X-
ray flare M3.9 that started at 12:56 UT, peaked at 13:55 UT
and stopped at 14:44 UT from NOAA 12975. Within the
time interval, the SEP takes place at 14:21 UT and peaks at
15:41 UT. Figure 13 illustrates the variability in the iono-
spheric TEC in response to the GOES soft X-ray flare
and SEP simultaneously over different regions of the globe
(Fig. 13a–c).

Figure 13 clearly shows no significant ionospheric TEC
variation caused by the development of the M3.9 flare, as
well as from the occurrence of SEP in this time frame over all
regions (Fig. 13a–c). It should be noted that the particles that
are not deflected by the magnetosphere become trapped in
the Earth’s magnetic field (Oran et al., 2022). Another M4.3
solar flare erupted from the same active region (AR12975) at
17:34 UT, peaked at 17:44 UT, and ended at 17:51 UT. The
e-CALLISTO has not detected any radio events and neither
has been reported by the Space Weather Prediction Centre
(SWPC). According to Fig. 13, substantial fluctuation in the
ROTI in the high-latitude region (BAKE) began before the
second solar flare and is thought to be manifested by the SEP
interaction with the magnetosphere. However, the irregular-
ity in ROTI began near the peak of the second flare in mid-
latitude (Fig. 13b), and it is assumed to be a response to that
flare. The equatorial region is unaffected by the three occur-
rences (Fig. 13c). Using the instance scenarios above, it is
vital to note that the solar flare lasts between 15 min and 2 h,
resulting in continuous ionization throughout the event (Tsu-
rutani et al., 2009). Furthermore, the SEPs come quickly af-
ter the flare, depending on the particle’s kinetic energy, pitch
angle and magnetic connectivity (Hilchenbach et al., 2003;
Tsurutani et al., 2009).

4 Conclusions

In this study, we report on an analysis of 32 well-separated
type II radio bursts observed by e-CALLISTO network from
May 2021 to December 2022. The parameters of type II ra-
dio bursts, such as bandwidth, drift rates and starting fre-
quency are used to derive the corresponding shock parame-
ters: the shock speed, Alfvén speed, Mach number and mag-
netic field strength. The shock and Alfvén speeds are es-
timated in the range of 504–1282 and 368–826 km−1, re-
spectively, at heliocentric distance ∼ 1–2 R�. The range of
measurements is consistent with the earlier works, includ-
ing the Alfvén speed with 550–400 km−1 given in Cho et al.
(2007) at ∼ 1.6–2.1 R�. The Alfvén speed of the order of
140 to 460 km−1 at heliocentric distance∼ 1.2–1.5 R� is re-

ported in Gopalswamy (2011), while Kim et al. (2012) in-
ferred Alfvén speed in the range of 259–982 km−1 is over
3–15 R�. The shock speed estimated agrees well with the
works of Cunha-Silva et al. (2015) and Minta et al. (2023),
who found shock speed of the order of 200 to 810 km−1. Us-
ing the Rankine–Hugoniot approximation, the Mach number
of the order of 1.1 to 1.8 is obtained and the magnetic field
strength in the range of ∼ 7.8–0.7G, which is fitted with a
single power law B(r)= 6.07r−3.96G at the same heliocen-
tric distance. The range of the Mach number is in good agree-
ment with the range of Mach number of 1.59<MA < 2.53
reported by Mann et al. (2022) and MA ≥ 1.5 by Su et al.
(2022). Our magnetic field strength estimate of the order
∼ 7.8–0.7G at∼ 1–2 R� is well consistent with the work of
Vršnak et al. (2002), who reported the magnetic field strength
of 1–8 G at ∼ 1.6 R� and also with 6–5 G at ∼ 1.5–1.7 R�,
as found in Ramesh et al. (2010). According to the current
research, 19 of the 32 type II radio events are precursors
for space weather because they are connected to immedi-
ate space weather phenomena like radio blackouts and polar
cap absorption events, exhibit band-splitting characteristics
or are followed by type III and IV bursts. The current study’s
findings also reveal that ionospheric disturbances are com-
mon depending on the strength of flare classes and/or SEPs,
as evidenced by ROTI irregularities, and solar radio type II
observations are used as indicators in this situation. This arti-
cle demonstrates that because type II bursts are connected to
space weather hazards, understanding various physical prop-
erties of type II bursts aids in the prediction and forecast of
space weather.
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